

Assembly Editor Guide

April 15, 2019

PROPRIETARY NOTICE

Copyright © 2019 APIANT, Inc. All Rights Reserved.

The information herein is the property of APIANT, Inc., and any misuse or abuse will result in

economic loss. DO NOT COPY UNLESS YOU HAVE BEEN GIVEN SPECIFIC WRITTEN

AUTHORIZATION FROM APIANT, INC.

DISCLAIMER

THE INFORMATION IN THIS DOCUMENT WILL BE SUBJECT TO PERIODIC CHANGE AND

UPDATING. PLEASE CONFIRM THAT YOU HAVE THE MOST CURRENT DOCUMENTATION. THERE

ARE NO WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, PROVIDED IN THIS

DOCUMENTATION, OTHER THAN THOSE EXPRESSLY AGREED UPON IN THE APPLICABLE

APIANT, INC. CONTRACT, ERRORS AND OMISSIONS EXCEPTED.

For additional information, please contact:

APIANT, Inc.

196 West Ashland Street

Doylestown, PA 18901

Email: support@apiant.com

Page 2 of 149

Table of Contents

Introduction 6

APIANT overview 7

What is APIANT? 7

Who can use APIANT? 8

Chapter 1: Assembly Editor Overview 13

Assembly Editor Overview 14

File Menu 15

Opening Recently Saved Assemblies 16

Saving Assemblies 17

Edit Menu 19

Tidying Diagrams 19

More Menu 20

Account Menu 21

Account Management 21

Keyvault Management 22

Switch Accounts 22

Developer Menu 24

Open Admin Console 24

Open Assembly Editor Guide 24

Open appRPC Javadoc 24

Open VTD-XML Parser Javadoc 25

Open Trace Log 25

Purge Trace Log 25

Open Webhooks Log 25

Purge Webhooks Log 25

Execute Assembly on Server 25

Request a Review of this Assembly 26

Settings 27

Snap drag 27

Show service account fields 28

Reuse module data when possible 28

Autoload data 29

Debug mode 29

Report execution errors 30

Page 3 of 149

Debug module timings 30

Debug nested modules 30

Debug module input/output data 30

Verbose module debug output 30

Versions 31

Comparing Assembly Versions 31

Catalog 33

Sharing Catalog Content 36

Tagging Catalog Content 37

Information Area 38

Quick Picks 41

Chapter 2: Working with Modules 42

Modules 43

Chapter 3: Working with Assemblies 47

Module Wiring 48

Building Assemblies 51

Editing Assemblies 57

Cloning modules 59

Documenting Assemblies 60

Chapter 4: Subassemblies 62

Overview 63

Dropdown Parameter Subassemblies 66

Subassembly Input Parameters 67

Chapter 5: API Integrations 70

Overview 71

Service Accounts 72

App Assemblies 75

No Credentials Needed 76

User-Entered Credentials 77

OAuth Integrations 80

OAuth v2.0 Token Refresh 83

OAuth Access Token Expiration 83

Trigger and Action Commonality 84

API Credentials 84

Error Handling 85

Automatic Error Retries 86

Configuration Settings 87

Trigger Assemblies 89

Page 4 of 149

Webhook Triggers 90

Manually Configured Webhooks 91

API-Registered Webhooks 92

Dangling Webhooks 94

Webhooks with one event type 96

Webhooks with multiple event types per account 96

Webhooks with multiple events and multiple accounts 97

Protocol Thread Triggers 98

Unary Protocol Threads 98

Freeform Protocol Threads 98

Webhook Listener Threads 108

Starting/Stopping Unary Protocol Threads 112

Per-Trigger Protocol Threads 113

Polling Triggers 115

Data Row Identifier Storage 121

Date/Time Triggers 122

Gated Triggers 123

Export Triggers 124

Action Assemblies 126

Find Actions 128

Two-Way Sync 129

Two-Way Sync Triggers 130

Two-Way Sync Actions 131

Chapter 6: Other Assembly Types 133

Web Services 134

Managing Web Services 138

RSS Feeds 139

Batch Jobs 140

Managing Batch Jobs 141

Chapter 7: Other Functionality 142

Simple DB 143

Importing and Exporting 145

Exporting 145

Importing 147

Publishing 149

Page 5 of 149

Introduction

The APIANT Assembly Editor Guide is for semi-technical and technical

people who want to learn the basics of using the Assembly Editor to

integrate API’s and build solutions.

Page 6 of 149

APIANT overview

What is APIANT?

APIANT is a system for leveraging API’s to build automated workflows

and visual widgets. APIANT provides advanced technology for building

solutions that access, process, and output data easily and flexibly.

APIANT is browser-based. All solution development occurs

within a web browser.

APIANT can build automations. APIANT can build

automations that perform data processing among multiple API’s.

Automations consist of one or more triggers and one or more

actions plus optional conditional logic. If the trigger criteria are

met, the actions are invoked. Conditional logic can be used to

execute certain actions. Conditional logic can be nested.

API integrations can require no coding. Visual wiring

diagrams, called Assemblies, allow data processing modules to

be connected and configured to send/receive data from API’s

and perform data processing logic. Nested assemblies can be

created, called subassemblies. Subassemblies allow

modularized, re-usable data processing components to be built.

Extension modules allow inline coding when necessary, using

JavaScript, Java, or PHP.

Solutions can run in the browser or on the server. APIANT

can not only build automations, but also web services

(REST-style API endpoints external systems can invoke), batch

processes, and even visual browser widgets. Browser widgets

can access server-side assemblies, allowing solutions to

distribute their processing as needed.

APIANT is fully extensible. Software developers can extend

the system either with inline JavaScript/Java/PHP code or by

writing custom software modules using the built-in

browser-based Integrated Development Environment (IDE). A

full-featured debugger aids module development.

Page 7 of 149

Who can use APIANT?

APIANT is designed to be used by people of varying technical skill

levels:

● Non-technical people can build automations with the Automation

Editor that perform actions when trigger criteria are met.

● Semi-technical analysts with knowledge of XML can construct

assemblies that process data and perform logic without coding.

● Business-level developers with some knowledge of JavaScript

can create more sophisticated solutions, by writing logic and

connecting components together to form larger solutions.

● Software engineers can extend the system by building custom

software modules using JavaScript/Java and the provided Module

API.

Page 8 of 149

APIANT’s Automation Editor can be used by non-technical people to

build automated workflows.

Automations can consist of one or more trigger criteria coupled with

one or more actions to be performed. Actions can be branched using

conditional logic. Nested conditional logic branches can be built.

Apps, triggers, and actions are all integrated via Assembly Editor

diagrams, making the Automation Editor fully extensible.

Page 9 of 149

All automations and widgets in the system are composed of one or

more assemblies built with the Assembly Editor.

An assembly is a collection of software modules configured to perform

processing. Software modules perform data input, processing, and

output.

Nested assemblies can be created, called subassemblies.

Subassemblies help to manage the complexity of assembly diagrams

by forming modular, reusable components.

Assemblies may run either in the browser or on the server. An

assembly running in the browser can invoke one or more assemblies

on the server, which in turn can invoke other server-side assemblies.

Page 10 of 149

Assemblies are composed of one or more software modules, created

with the Module IDE.

The Module IDE provides all the facilities needed to build and

troubleshoot software modules.

The module user interfaces that appear in assembly diagrams are built

with the drag-drop WYSIWYG module definition designer shown above.

Modules can have properties that control their runtime behavior. A

drag-drop WYSIWYG property designer is used to design how module

properties appear.

A browser-based code editor is used to develop the module

implementation using JavaScript/Java. The UI for visual modules can

be designed with a WYSIWYG designer.

Class libraries can be developed, to create reusable modules that can

be shared across module implementations. The system provides many

class libraries used to construct the system itself.

Server scripts can be developed from the IDE, using languages

installed on the server like JSP or PHP. Server scripts help extend the

processing of modules, making use of existing libraries.

Module resources like graphic art and audio clips can be uploaded to

the server from the IDE.

The Module IDE also provides a full-featured debugger to help

troubleshoot modules. The debugger can inspect variables and object

instances, monitor class attributes and methods, and evaluate entered

expressions.

Page 11 of 149

APIANT includes a comprehensive Admin Console for system

administrators. The Admin Console provides system administrators

extensive tools and functionality to help operate the system.

Page 12 of 149

Chapter 1:

Assembly Editor

Overview

Page 13 of 149

Assembly Editor Overview

APIANT’s Assembly Editor is a browser-based visual software

development tool for building software solutions. Prefabricated or

custom-built software modules are wired together and configured to

perform functionality.

The system contains over 200 baseline modules, including extension

modules that allow inline Java, PHP, and JavaScript code to be used.

Modules are built with the integrated Module IDE, documented in a

separate guide. New module development is typically no longer

necessary.

Page 14 of 149

File Menu

The File menu at the top right of the editor provides functionality for

managing your assembly diagrams:

Note: The export and import menu options only

appear for accounts having the “Export” and “Import”

permissions.

Page 15 of 149

Opening Recently Saved Assemblies

You can quickly access your most recently saved assemblies via the

Load Recent menu option:

Page 16 of 149

Saving Assemblies

Assemblies can be saved via the Save menu:

This opens the Save Assembly dialog:

The contents of the Save Assembly dialog will vary depending upon

the type of assembly being saved and your account permissions.

Page 17 of 149

In general the Save Assembly functionality determines the assembly's

catalog entry.

If you don't own the assembly, you can only save a copy.

Assemblies can be saved as private or public. Private assemblies are

not accessible by others and appear only in your “Mine” tab within

your catalogs. Public assemblies can be used by anyone in the

system.

Note: When saving a copy of an assembly that is

public, it is initially saved as private.

Tip: Assemblies can also be right-clicked in the catalog

to make them private or public.

Once saved, any changes made to the assembly’s catalog description

will be reflected in the Assembly Editor's catalog. App, action, and

trigger assemblies also get updated in the Automation Editor catalogs.

Note: After saving an app, action, or trigger assembly,

the Automation Editor catalogs are not automatically

updated if the Automation Editor is open in another

browser tab. Perform searches in them to refresh their

contents.

Page 18 of 149

Edit Menu

The Edit menu at the top right of the editor provides functionality for

copy-paste-delete of modules:

Note: It is usually easier to use the canvas-level

right-click menu for edit options. See Chapter 2

section “Editing Assemblies”.

Tidying Diagrams

The Tidy menu option automatically repositions elements in the

diagram so that none overlap.

Page 19 of 149

More Menu

The More menu at the top right of the editor provides functionality for

the catalog and for managing Batch Jobs and Web Services:

The Close Catalog option can be used to close and re-open the

catalog, to help provide more editor space in the browser window. The

menu option toggles depending on the state of the catalog.

The Refresh Catalog option reloads the catalog’s contents.

See Chapter 6 for information about managing Batch Jobs and Web

Services.

Page 20 of 149

Account Menu

The Account menu at the top right of the editor provides functionality

for the catalog and for managing Batch Jobs and Web Services:

Account Management

You can manage your account from the Manage menu option. The

Account Management dialog will appear:

Page 21 of 149

You can edit your account details and change your password as

needed.

Keyvault Management

The Keyvault menu option accesses your personal Keyvault. Values

stored in the keyvault are accessible from Utility - Keyvault Value

modules within assembly diagrams.

See Chapter 5 section “OAuth Integrations” for more about the usage

of the keyvault.

Note: Typically your personal keyvault is only used for

development and testing within the assembly editor.

Finished integrations typically access the system

admin’s keyvault, accessible in the Admin Console.

Switch Accounts

The Switch menu option is support-level functionality that allows you

to impersonate other accounts.

Note: This menu option only appears for accounts

having the “Switch Account” permission.

An account selection dialog will appear:

Page 22 of 149

After an account is chosen, the current session will impersonate the

selected account.

Note: Only switch accounts when no assemblies are

being edited!

Assemblies access account information for the account

that was active at the time the assembly was opened.

So to test an assembly using a certain account, you

must first switch to the desired account and then open

the assembly.

Page 23 of 149

Developer Menu

The developer menu at the top right of the editor appears for user

accounts having the “Assembly Developer” permission:

Mouse over each setting’s hyperlink for help information.

Open Admin Console

Opens the Admin Console in a new browser window.

Open Assembly Editor Guide

Opens this guide in a new browser window.

Open appRPC Javadoc

Opens a new browser window with documentation for the appRPC

object used in inlined Java JSP code within Extension modules.

Page 24 of 149

Open VTD-XML Parser Javadoc

Opens a new browser window with documentation for the VTD-XML

parser used in inlined Java JSP code within Extension modules.

Open Trace Log

Opens a new browser window with the output from

System.out.println() when executed in inlined Java JSP code within

Extension modules. The trace log is private to the developer's

account.

Purge Trace Log

Purges the contents of the trace log. The trace log is private to the

developer's account.

Open Webhooks Log

Opens a new browser window with the content of the system's

webhooks log. The webhooks log contains raw data received by all

incoming webhooks into the system.

Purge Webhooks Log

Purges the contents of the webhooks log. The webhooks log is global

to the entire system.

Execute Assembly on Server

Executes the currently opened assembly on the server. Normally

assemblies are executed in the browser as they are being developed in

the Assembly Editor. Executing assemblies on the server allows them

to be troubleshooted in the same manner as they are executed by

automations.

Page 25 of 149

Request a Review of this Assembly

This link only appears if the server is a development server. Sends an

email to all accounts in the system having the Assembly Reviewer

permission, requesting that someone review the assembly. After

clicking the link, you can enter a message for the reviewers to include

in the email.

The assembly reviewer may place highlighted annotations in your

assembly. The reviewer can send you an email message alerting you

when their review is complete.

Page 26 of 149

Settings

The Assembly Editor's settings are available at the top right of the

editor:

Editor settings are saved in a browser cookie. If you access the editor

in another browser, the settings are not restored with your session.

Mouse over each setting’s hyperlink for help information.

Snap drag

When checked, modules will align themselves to an invisible grid when

dragged.

Page 27 of 149

Show service account fields

This is an advanced setting not normally used.

A “service account” is synonymous with “app account”. It is the name

an end user gives an account when an app is connected in the

Automation Editor. The first connected account is always named

“Default”.

By default automation triggers and actions will use the service account

configured by end users when automations are constructed. Service

account fields within modules are normally left blank to indicate that

the system should use the service account configured in the

automation. Checking this option will cause service account fields to

appear in the Assembly Editor modules, which allows assemblies to be

constructed that use multiple service accounts.

Reuse module data when possible

The Assembly Editor's engine executes modules in the editor either

when the “Execute Assembly” link at the top right is clicked, or when

modules are double-clicked in the editor. (The engine can also be

configured to automatically execute if the “Autoload data” setting is

checked, described next.)

When the engine executes, if modules have been previously executed

the engine can be configured to reuse the previously loaded data by

checking the Reuse module data when possible option. This

setting provides a significant speed enhancement, since the engine can

skip modules that are not “dirty”. A module is considered dirty if it has

not been executed by the engine, or if any control within the module’s

UI has either received focus or been modified. If the setting is

unchecked, all modules within the assembly will be forcibly executed

by the Assembly Editor's engine whenever the engine is run.

Page 28 of 149

Autoload data

The process of building an assembly consists of wiring modules

together and configuring them. Most modules in the system require

input data from other modules in order to be configured. The

Assembly Editor's engine must be executed to run the assembly and

load any available data into the configured modules.

The Autoload data when modules wired option controls if the

engine will be automatically run whenever modules are wired together.

If the option is checked, each time a wire is connected to a module the

engine will execute, automatically loading available data into the wired

module. If the option is unchecked, the target module must be

double-clicked or the Execute Assembly button must be clicked to run

the engine to load available data into the module.

Debug mode

Selecting the debug mode option will cause the Assembly Editor to

reload itself in debug mode. Debug mode provides access to a debug

window where data can be inspected and module implementations can

be troubleshooted.

When the editor loads in Debug Mode, additional options appear in the

Settings:

Page 29 of 149

Report execution errors

The Assembly Editor's engine traps any module execution errors that

may occur as assemblies are executed. These are typically the result

of errors in module implementation code created by module

developers. As such, the reported error information is most useful for

module developers to troubleshoot their developed modules. If the

Report execution errors option is checked, the engine will display

any execution errors in a popup window after the engine completes.

Debug module timings

The Assembly Editor's engine can display timing information for how

long each module takes to execute.

Turning on this option may increase the execution time for assemblies

in the editor.

Debug nested modules

The Assembly Editor's engine can optionally display nested modules in

the debug window as assemblies are executed.

Turning on this option will increase the execution time for assemblies

in the editor.

Debug module input/output data

The Assembly Editor's engine can display module input/output data in

the debug window as assemblies are executed. This information can

help module developers troubleshoot modules.

Turning on this option will greatly increase the execution time for

assemblies in the editor. Unless modules are being debugged, it is

recommended to leave this setting turned off.

Verbose module debug output

Checking this option will cause modules to output all available debug

information.

Turning on this option may greatly increase the execution time for

assemblies in the editor.

Page 30 of 149

Versions

The versions link at the top right of the editor is enabled when an

assembly is opened in the editor:

Each time an assembly is saved a new version is created. Clicking an

old version from the list of versions will open that older version.

Comparing Assembly Versions

If a version from the assembly versions list is clicked and the diagram

currently opened has no unsaved edits, a dialog will appear to either

compare the selected version with the currently opened version, or to

open the selected version in a new tab:

Page 31 of 149

Clicking the Compare button will place the currently opened assembly

into read-only mode and load the selected version of the diagram such

that the two can be compared for differences:

Initially the previously opened diagram is displayed first. Changing

the Version Opacity slider at the top left will let either diagram be

viewed, allowing changes to be compared. The legend at the top right

shows the colors used to highlight removed/added/modified modules.

Clicking the pencil edit icon to edit inline code within Extension

modules will display a diff view of the line-by-line code differences:

Page 32 of 149

Catalog

The Catalog contains all public, private, and shared software modules,

assemblies, and subassemblies:

Items in the Community tab are publicly available to all users in the

system. Items in the Mine tab are those items created by you,

including any items kept private. The Mine tab also contains items

shared by you and items shared with you.

Page 33 of 149

Performing a search opens the search options:

By default the initial search is for modules matching the query in their

names, descriptions, or tags. The initial search is performed within

both the Community and Mine catalogs.

Select the appropriate radio button to perform the search again for the

selected option.

The Text within module fields option searches assemblies with

modules having configured fields that contain the value. The matching

is performed case-insensitive. When an assembly in the search results

is opened, matching module fields will be highlighted.

The Text within notes option searches assemblies with notes (yellow

stickies) that contain the value. The matching is performed

case-insensitive. When an assembly in the search results is opened,

matching notes will be highlighted.

Note: Assemblies that are open when searches for

module fields or notes are performed will not highlight

any matching content.

Only newly opened assemblies from the search results

will highlight matching content.

Click the Close button to close the search results.

Page 34 of 149

Items in the catalog can be added to the assembly diagram by either

clicking on them, or by dragging and dropping them into place within

the wiring diagram.

Right-click on items in the module Catalog to view the item’s context

menu containing actions that may be performed on the item. The

context menu options vary depending on which catalog and catalog

section is selected, the account's permissions, system settings, etc.

Right-click context menu actions include:

Share, which shares private items with other user accounts

Make public/private, which controls privacy settings for

items you own

View Sample Assembly, which opens a sample assembly

demonstrating how to use a module

Find, which performs a search for the item where it is

contained within other items, e.g. find all assemblies using a

module

Tag, which allows tag keywords to be edited for the item. The

tags can then be queried in the catalog

Get UUID, which returns the item's unique identifier

Properties, which displays the item's owner and timestamps

for when the item was created and last edited

Delete, which deletes items from the system

Export, which exports the item as a single export file, which

can then be imported into another APIANT system

Publish to production server(s), which automatically

performs an export from the sandbox system and imports the

item to the production system

Page 35 of 149

Sharing Catalog Content

Non-public content you have created can be shared with other users in

the system. To share an item, right-click a non-public item in the

catalog and choose the Share with other accounts option.

The Share Settings for the item will appear beneath the catalog, listing

all user accounts in the system and the item’s access permissions:

Only one user at a time can have write access to shared content.

Users without write access can only save a copy of shared content.

Shared modules and assemblies do not mirror updates in real-time

when multiple accounts access the items.

Page 36 of 149

Tagging Catalog Content

Items in the catalog can be tagged with keywords that can be

searched upon. To edit an item’s tags, select the Tags… option from

a catalog item’s right-click context menu:

A dialog window appears for editing the tags associated with the item:

Separate multiple tag keywords or phrases with commas. Click the

Update button to save the tags for the item.

When a catalog search is performed, any items with matching tags will

appear separately in the search results:

Page 37 of 149

Information Area

The Information Area at the lower left of the editor displays help

information and data previews.

Help information is displayed when either an item is moused over in

the catalog, or when the question mark icon in module title bars are

clicked:

Double-clicking on a module in the editor will cause the engine to

execute, if the module either contains no data or if changes to the

modules in the diagram have been made. If the engine executes, it

will stop execution on the module that was double-clicked. Any

module output data will be displayed in the Information Area:

If the module emits data streams (XML documents), the Open

Stream Inspector button will appear. The module will also display a

Page 38 of 149

magnify icon in its window title bar to indicate data streams have been

loaded into the module and are available for inspection:

Click either the Open Stream Inspector button or the magnify icon

to open a dialog that will display all the available data streams in a

syntax-highlighted viewer:

Page 39 of 149

The Stream Inspector displays the raw data streams output from the

module. To view the manipulations performed to the data stream, the

input and output data streams can be compared, or “diff’ed”, by

clicking the Compare Input vs. Output button:

The XML Diff view visually depicts the data modifications modules

perform to data streams. The XML Diff view highlights removed data

in red, inserted data in blue, and unmodified data in black.

Note: The XML Diff calculations can take a long time

for data > 100KB. The diff calculations can be

cancelled if you get tired of waiting for the results.

Not all XML can be successfully Diff’ed. When this

occurs, a message will appear.

Click the View Raw Output Data button to return to the raw data

stream view.

Page 40 of 149

Quick Picks

Underneath the wiring diagram canvas is a tray where frequently used

catalog items can be saved for quick access:

Your quick picks are saved on the server and reloaded every time the

Assembly Editor loads.

To add an item to the quick pick tray, drag an item from the catalog

and drop it into the tray. The item can then be dragged from the

quick pick tray and dropped into a wiring diagram when needed.

Note: Not all catalog items can be placed into the

quick pick tray. Only catalog items that are draggable

can be dropped into the tray.

To remove an item from the quick pick tray, first click it to select it,

then click the X delete icon:

Page 41 of 149

Chapter 2: Working

with Modules

Page 42 of 149

Modules

Modules are the basic building blocks of assembly diagrams:

A module is a piece of software that performs specific functionality.

Modules are constructed with the Module IDE, built into the Assembly

Editor. If you are licensed to use the Module IDE, see the separate

Module IDE guide for how to build new modules.

Note: Generally new modules don’t have to be built

because the system has Extension modules for inlining

Java, PHP, and JavaScript code directly into assembly

diagrams, providing an ad-hoc way to extend assembly

functionality.

The tradeoff is that native modules offer the best

possible performance.

Page 43 of 149

The baseline system has almost 200 modules within 6 top-level

categories:

There is currently no standalone documentation that describes each

baseline module in detail, but modules have help information and

assemblies that demonstrate their usage.

You don’t need to know or use all 200 modules for building API

integrations. Generally fewer than three dozen modules are commonly

used. A list of commonly used modules is at:

https://intercom.help/apiant/integrators/most-commonly-used-modules-in-the-assembly-editor

Page 44 of 149

https://intercom.help/apiant/integrators/most-commonly-used-modules-in-the-assembly-editor

You can view help information for a module by mousing over it in the

catalog, or by clicking on the “?” icon in its title bar when it is in a

diagram:

Click the View Sample Assembly button to open a diagram that

demonstrates usage of the module.

Page 45 of 149

Another helpful way to learn about a module is to view other

assemblies that use it. Right-click on a module in the catalog and use

the “find all assemblies using this module” menu option:

When using Extension modules for inlining Java, PHP, and JavaScript

code, you can borrow code snippets by searching the catalog for

modules containing specified text. For example, to find all assemblies

containing any inlined PHP code, perform this search:

Be sure to select the “text within module fields” search option.

Page 46 of 149

Chapter 3: Working

with Assemblies

Page 47 of 149

Module Wiring

Wires in the Assembly Editor are used to represent data flowing from

module to module.

There are no circular paths within wiring diagrams. Wiring diagrams

always flow top-down. To accomplish looping, various Loop Modules

can be used in which a nested item (either a Module or Subassembly)

can be placed to perform logic over many data rows within XML

documents.

The Data Streams - Split module allows a wire to be split into identical

outputs, facilitating differing operations upon the data that can later be

recombined into a single data stream with the Data Streams - Union

module.

To facilitate branching logic, the Conditional Execution modules can be

used. These work like Loops, where a nested module or subassembly

can be executed based on criteria.

Data in Assembly Editor wires is either:

● Literal values like text and numbers

● One or more XML documents called Data Streams

Wire nodes at the top of modules represent input data into the

module. Wire nodes at the bottom of modules represent output data

out of the module. Fields inside of modules can accept input from the

output of other modules.

Wire nodes at the top and bottom of modules have a data type that is

typically “xml”, “text”, or “number”. The data type can be inspected

by mousing over the node.

Wires can only be connected to nodes of a compatible type.

Page 48 of 149

If a wire containing data streams is connected to a text or number

node, the editor will prompt to allow a value within a data stream to

be used for the text or number value:

If the data path matches more than one node, commas will be placed

between the values.

After clicking the Select button, a black label will appear on the wire to

indicate what value is being extracted from the data stream:

The black label can be dragged into a different position if needed.

Once moved, it will continue to follow its associated wire when the

wire is moved.

The black label can be clicked to select a different value from the data

stream.

Page 49 of 149

Wire Connectors allow a wire to logically connect from one point in the

diagram to another point. The Wire Connector is important, so by

default it is in the Quick Picks:

Wire Connectors can connect to any input or output node:

Give the wire connector a useful label so it is obvious what data it

references. Then press the Enter key or click the Unjoin button to

separate the connector into two pieces:

Then position the second piece where it is needed in the diagram. The

Join button can be used if it isn't apparent where the other piece is

within the diagram.

Tip: Use Wire Connectors to avoid “spaghetti

diagrams”!

Page 50 of 149

Building Assemblies

Modules and other catalog items are added to diagrams by either

clicking on them in the catalog, or by dragging and dropping them into

place. Modules can be removed from diagrams via the X delete icon at

the top right of their title bar.

Note: The numbers that appear in the module title

bars do not represent their execution order. Modules

are numbered top-down in the diagrams only to

facilitate inspection of debug logs, to make it apparent

which module is emitting log information.

Many modules have fields that operate on data contained within XML

data structures. When first added to the diagram, these dropdowns

will be empty and show No data loaded:

The dropdowns do not become populated until the module is wired

with data from another module. To do this, click the yellow output

node from the bottom of a data source module and drag the wire to

the yellow input node at the top of the destination module. Note that

allowed target nodes for the wire will blink within the wiring diagram,

as determine by the data type. The data type can be viewed with the

mouseover tooltip by placing the mouse cursor over a node.

Page 51 of 149

Once the module has been wired with a connection from a data source

module, there are two ways the data fields become active and

populated with any available data:

If the Autoload Data setting is checked, any available data from

preceding modules in the diagram will be autoloaded into the target

module when the wire is connected.

If the Autoload Data option is not checked, then the target module can

be double-clicked on its title bar or background to execute the engine

and load the module with available data from preceding modules in the

diagram. The engine will halt execution on the module that was

double-clicked.

Note: When a module is double-clicked the assembly

engine will only run if the module is “dirty”, e.g. if any

of its fields or settings have changed.

The Execute Assembly link at the top right of the editor can be used to

execute the entire diagram.

Page 52 of 149

If the input data module returns valid data, the data field dropdown

lists will now contain data paths parsed from the XML document:

Moving the mouse cursor over data paths in the dropdown list will

display matching data in the module Information view at the bottom

left of the editor.

Page 53 of 149

Another way to select data paths is to click the magnifying glass icon

next to the dropdown lists. The icon only appears after data is loaded

into the module:

Clicking the icon will open a dialog displaying the available data loaded

into the module:

The available data streams loaded into the module will appear as tabs.

Select an available tab to view the data for the corresponding data

stream.

Moving the mouse cursor over various data elements will cause all

corresponding elements matching the data path to blink. Clicking on

an element that is blinking will close the dialog and populate the

dropdown value with the selected data path.

Page 54 of 149

Some modules have additional settings available from a More

Settings link at their bottom:

Unlike fields within the module's main body, settings cannot accept

any wired values.

Page 55 of 149

Modules can be clicked in their background body area to display

options:

Page 56 of 149

Editing Assemblies

Multiple modules can be moved at once by first dragging a selection

area around the modules:

Only modules entirely contained within the selection area will become

highlighted. After selecting the desired modules to move, dragging

any one of the selected modules will move all selected modules as a

group together. Click the editor background to unselect the modules.

Tip: To easily make space to insert a module into an

existing vertical logic chain, right click on the existing

module at the insertion point and choose the Select

This And All Below option, then drag the selected

modules down to make room for the new module.

Page 57 of 149

When one or more modules are selected, options become available in

the editor's right-click context menu to copy, paste, or delete the

selected modules. Access the editor context menu by right-clicking on

the background:

The Select All Items option will select all items in the wiring diagram.

The Select All Items Below option will select all items in the wiring

diagram below the cursor.

The Copy Selected Item(s) option will place the selected items into

the editor’s clipboard. Afterwards, the Paste Item(s) option becomes

enabled, allowing the copied modules to be pasted into the current

assembly.

Tip: Modules can be copied into other assemblies by

selecting the target assembly’s tab in the editor.

The Delete Selected Item(s) option will delete the currently selected

modules from the current assembly. The option is only enabled when

one or more modules are selected in the editor.

Page 58 of 149

Cloning modules

Another way to copy a single item in the Assembly Editor diagram is to

hold the Control key (use the Command key on macOS) while

dragging the item.

Doing so will create a clone of the item that can be placed into the

diagram.

Tip: The main advantage of cloning modules is to be

able to copy items into and out of modules that allow

nesting, like the Loop and Conditional modules.

Page 59 of 149

Documenting Assemblies

If you intend to share your assemblies with others, consider adding

Notes and provide help information to others so they can understand

what your assembly does. Notes can be added via the Note in the

Quick Picks:

The note appears like a yellow sticky you can enter text in:

Page 60 of 149

If an assembly is accessing an API, it can be helpful to include links to

that API’s documentation. A link can be added to the diagram via the

Link in the Quick Picks:

Then enter the URL to the web page that will be opened when the

Open button is clicked:

Page 61 of 149

Chapter 4:

Subassemblies

Page 62 of 149

Overview

Subassemblies promote the re-use of functionality and reduce the

complexity of wiring diagrams:

A subassembly can consist of one or more modules or other

subassemblies. Subassemblies can also contain nested subassemblies.

Subassemblies appear with a blue window in the editor, to help them

stand out from individual modules.

Page 63 of 149

Subassemblies are edited and tested like other standalone assemblies.

Subassemblies are created when an assembly having both a

Subassembly Input module and a Subassembly Output module is

saved into the Subassemblies category:

The saved subassembly can then be used within assemblies or other

subassemblies.

Page 64 of 149

All subassemblies must contain a Subassembly Input module and a

Subassembly Output module, which define the entry point and input

data into the subassembly, and the output data from the subassembly:

When an outer assembly invokes the subassembly, any data streams

wired into the subassembly are emitted from the Subassembly Input

module.

The Subassembly Input module can be configured with test data in the

form of one or more XML Data Streams, or a text or number value.

The test data is only emitted when the subassembly is executed within

the editor.

The Subassembly Output module emits whatever is wired into it, which

can be one or more data streams, or a text or number value.

Page 65 of 149

Dropdown Parameter Subassemblies

The Dropdown Parameter (Populated) module is used when configuring

triggers or actions. A dropdown list is populated with the contents

emitted by a nested subassembly:

The nested subassembly can perform any needed logic, such as

fetching data from an API.

The subassembly must use a specialized version of the Subassembly

Output module, called Subassembly Output (Dropdown

Parameter):

This specialized module allows the labels that appear within the

dropdown to be specified, along with values for each label item.

Page 66 of 149

Subassembly Input Parameters

Subassemblies can be parameterized. Subassembly parameters make

it possible to customize your subassembly's behavior based on

configured values.

The Parameter modules contained in the module catalog under the

Input – Parameters category are used to define subassembly

parameters:

Page 67 of 149

In the example below, the Flickr URL subassembly has a parameter

tags defined:

The tags parameter is wired to the Flickr URL such that Flickr will

return photos matching the search criteria contained within the tags

parameter value.

When the Flickr URL subassembly is used, the tags parameter

becomes exposed in the subassembly window as a configurable field

value:

Page 68 of 149

Now, the tags parameter can be configured without having to edit the

Flickr URL subassembly.

Various types of Parameter modules are available, including

checkboxes, sliders, and more. Each parameter value will appear

using the UI control specified by the type of Parameter module used.

Note: If one or more parameters are defined and the

subassembly is referenced by another assembly, then

those existing parameters cannot be removed or

altered in order to preserve referential integrity.

Page 69 of 149

Chapter 5: API

Integrations

Page 70 of 149

Overview

Apps, triggers, and actions that appear in the Automation Editor are all

built as assemblies in the Assembly Editor.

All facets of configuring apps, triggers, and actions in the Automation

Editor are controlled by modules within their assemblies.

Automation execution and error handling are also defined via assembly

logic.

Page 71 of 149

Service Accounts

End users can connect multiple accounts to apps in the Automation

Editor:

The first connected account is always named Default. End users must

enter unique names for any additional connected accounts.

Accounts are associated with credentials needed to access API

endpoints on the user's behalf. Certain modules in the Assembly

Editor need to reference API credentials. They are:

● OAuth modules

● Service Credential modules

By default the Assembly Editor's settings has the Show service

account fields setting disabled:

Page 72 of 149

When the Show service account fields setting is disabled, modules

that have service accounts don't show the service account field.

Typically when building triggers and actions in the Assembly Editor,

development and testing is done using a single connected account, the

Default account. Service account fields are unused and their presence

is distracting since they are always empty.

Checking the Show service account fields setting causes them to

appear:

When the fields are blank they reference the Default account.

Entering any other value will cause the modules to attempt to load

credentials for the specified app using that entered name. If the

credentials are not found, an error occurs.

Entering service accounts manually in the Assembly Editor can be

needed when troubleshooting, in the case where a user is having

trouble with a certain connected account.

Service account fields also make it possible to build assemblies that

reference multiple accounts.

Page 73 of 149

Note: The Automation Editor does not know if a trigger

or action references multiple service accounts. It is up

to the developer of the trigger/action to inform users

that they must connect certain named accounts that

the assemblies expect to exist.

Page 74 of 149

App Assemblies

App assemblies appear in the catalog as top-level assemblies for app

integrations:

The purpose of app assemblies is to obtain and validate any needed

user credentials in order for trigger and action assemblies to make API

calls on their behalf.

The basic patterns for obtaining user credentials are:

● No credentials needed

● The user needs to enter credentials like a username/password or

API key

● The user needs to perform OAuth workflow

Page 75 of 149

No Credentials Needed

Sources of data like RSS news feeds need no authentication to access.

In this case, the app assembly just needs a single No Credentials

Needed module:

The purpose of this module is to just allow the assembly to be saved

as an app assembly:

Page 76 of 149

User-Entered Credentials

Some API's are accessed with credentials that must be entered by the

user, like a username and password, or an API key.

The 123ContactForm assembly is an example that should be copied

and modified for these types of apps.

The first module presents a dialog window where the user can enter

the needed information:

The module is configured with help information to explain where the

user can find needed information. This is how the module appears

when executed:

Page 77 of 149

The next task for the 123ContactForm app assembly is to validate the

entered API Key by performing an API call with it using the HTTP

Transaction module:

A helpful link to the API documentation is provided that explains how

the API expects to receive the API Key.

The next section of the app assembly then checks the API response for

an error that indicates the entered API key is not valid:

Page 78 of 149

When run in the Automation Editor, this is what appears when an

invalid API Key is entered:

The final section of the 123ContactForm app assembly saves the API

Key into the system's database via the Service Credentials – Save

module:

Triggers and actions can retrieve the API Key from the system's

database using the Service Credentials – Get module.

Page 79 of 149

OAuth Integrations

Most major API's use the OAuth standard for authorizing user access

to their API. APIANT currently supports standard implementations of

both OAuth v1.0a and v2.0.

OAuth v1.0a and v2.0 integrations are done essentially the same. The

only difference is that a different module is used in the app assembly

depending upon which version the API uses.

See the Scoopit app assembly for an example of a standard v1.0a

integration. See the Asana app assembly for a standard v2.0

integration.

All OAuth app assemblies need to safeguard the API keys provided by

the API vendor when you register to access their API. This is done

using the Utility – Keyvault Value modules as shown above.

Your keyvault is accessible from the account menu:

Page 80 of 149

The keyvault is used to store values securely in the system's

database:

The names correspond to the key names entered in the Utility –

Keyvault Value modules to extract the stored value:

Notice that the top of the module shows Protected. This indicates the

output from the module cannot be viewed by other accounts when the

assembly is executed in the Assembly Editor.

Page 81 of 149

To protect output data for a module, right-click on the module and

choose the Protect Output Data option:

When protected, other user accounts cannot view the output data from

the module when executing the assembly in the Assembly Editor.

Tip: Any module can have its output data protected.

Consider using this whenever sensitive information

needs to be hidden from other accounts in the system.

Tip: If a value from a protected module is passed to

other modules before it reaches a destination field,

then those other modules should also have their output

data protected.

Page 82 of 149

OAuth v2.0 Token Refresh

Some OAuth v2.0 services require that the access token be refreshed.

They will provide a refresh token URL for this, which must be

configured within the OAuth v2.0 Workflow module:

Follow their documentation to know which HTTP verb is needed (POST

is used most often) and if the OAuth parameters need to be sent as

HTTP body parameters or not.

OAuth Access Token Expiration

OAuth access tokens can expire due to these circumstances:

● The user chooses to revoke access by performing an action in

the API provider's app.

● The OAuth v2.0 API provider requires that the access token be

refreshed but the OAuth v2.0 Workflow module's settings for

refreshing the token are not correct.

Whenever an access token becomes invalid, usually the API will return

a 401 HTTP status code. If an automation encounters a 401 HTTP

status code when executing a trigger or action that uses OAuth, the

system performs these steps:

● The user's connected account is disconnected by removing their

credentials from the database

● All of the user's automations that use the connected account are

turned off

Page 83 of 149

Trigger and Action Commonality

Trigger and Action assemblies share some common features and

behaviors.

API Credentials

Most triggers and actions invoke API's that require either user-entered

credentials or OAuth credentials.

The OAuth Transaction module and its variants automatically fetch the

user's credentials.

If an HTTP Transaction module or its variants is used, the Service

Credentials – Get module is needed to fetch API credentials saved by

the App Assembly:

In both cases, the Service Account fields should be left empty so that

the system will automatically use the account selected by the end user

when building automations in the Automation Editor.

Page 84 of 149

Error Handling

When a Trigger or Action assembly returns an error, the following

occurs:

● The automation stops its processing immediately

● If the automation's owner has configured it to report any error,

an email alert is sent to the automation's owner

● An email alert is sent to the system admin

Errors can be triggered in the following ways:

● When a Fatal Error module's criteria is met

● When a HTTP Transaction module or OAuth Transaction module,

or any of their variants, has the “halt assembly if error” setting

enabled and the API either returns an HTTP status code >= 400

or no data can be returned due to network-level errors

● When any module returns an error due to misconfiguration,

missing required data, or processing errors

The Turn Off Automation module can be placed within a

Conditional module if a permanent error is detected such that it

makes no sense to keep the automation running. An example is an

action that writes rows to a spreadsheet. If the spreadsheet no longer

exists, the automation should be halted.

Page 85 of 149

Automatic Error Retries

The system can be configured to recognize some errors as being

retryable, where the system will automatically retry the trigger data

row. By default, the system is configured retryable errors include:

● When a HTTP Transaction module or OAuth Transaction module,

or any of their variants, has the “halt assembly if error” setting

enabled and the API returns an HTTP status code >= 500

● When a HTTP Transaction module or OAuth Transaction module,

or any of their variants, has the “halt assembly if error” setting

enabled and a communication-level error occurs before the API

can send a response

Generally, only transient errors are configured to be retryable, where it

makes sense that the failed transaction might succeed after waiting for

a short period of time.

When the system performs an automatic retry, the trigger data row

will be retried after 5 minutes, then after 10 minutes, then after 15

minutes.

If after three automatic attempts the data row still fails, the data row

can be manually retried from the Automation Editor via the

automation's history screen:

The system retries failed transactions at the point of failure in the

automation’s action logic. If the failed action succeeds, the remainder

of the automation’s logic is executed. This is for both automatic and

manual retries.

Page 86 of 149

Configuration Settings

Triggers and Actions can display configuration settings in the

Automation Editor:

Configuration settings are displayed for the corresponding Parameter

modules placed into the trigger and action assemblies:

In this example, the end user must first choose a workspace and then

select a project within the workspace. The List Asana Projects

subassembly uses the selected workspace's id to fetch the projects for

Page 87 of 149

the selected workspace. The Sequence number determines the

display ordering of Parameter modules in the Automation Editor.

Page 88 of 149

Trigger Assemblies

Trigger assemblies cause the actions in an automation to be executed

when their criteria is met. Typically triggers will fire upon new or

updated data.

The main categories of triggers are:

● Webhook triggers that receive new or updated data pushed from

an external system. These are also called Instant Triggers.

● Protocol thread triggers that maintain an always-on connection

for sending and receiving data by running in threads on the

server. Generally a SDK is used that under the hood will

maintain a socket connection and communicate with a protocol

over the socket. An example is the XMPP protocol for Jabber.

Another example is a message queue listener. Protocol triggers

are also Instant Triggers.

● Polling triggers that periodically check an API for new or updated

data, for example every 15 minutes.

● Date/Time triggers that fire at a certain date and time, or on a

periodic time schedule like once an hour.

● Gated triggers that fire only once each time a threshold criteria

is met, like a weather trigger that fires when a temperature goes

below a certain value.

Page 89 of 149

Webhook Triggers

Webhook triggers, also called Instant Triggers, are the most efficient

type of triggers. 3rd-party systems push data via a webhook URL,

which immediately results in an automation being executed.

Webhooks come in two variations:

● Webhooks that end users must manually configure in the

3rd-party app

● Webhooks that can be registered via the app's API

There are further variations within each of those:

● Webhooks with one event type per webhook URL

● Webhooks with multiple event types sent to a single webhook

URL per customer account

● Webhooks with multiple event types and multiple customer

accounts all delivered to a single webhook URL

All webhook triggers contain the Webhook module.

Page 90 of 149

Manually Configured Webhooks

Some apps only allow webhooks to be manually configured by end

users. For these apps, the Webhook modules Webhook URL field

must be left blank:

When the Webhook URL field is blank, the module will generate a

webhook URL when the assembly is either executed in the Assembly

Editor (for testing) or in the automation editor. Configuration

instructions should be entered instructing the end user how to

configure the webhook in the app.

The Webhook module should have the Requires test transaction

checkbox checked if the data schema for the webhook's payload is

unknown or not always the same.

If the Webhook always returns the same data schema, then uncheck

the Requires test transaction checkbox and enter the output XML

from the Webhook module into the Dynamic trigger fields XML field

after running the assembly in the Assembly Editor first. This field XML

defines the output from the Trigger module.

Note: You must add CDATA escaping to the Raw POST

Payload 'value' and 'helptext' nodes when entering the

Webhook module's output into the Dynamic trigger

fields XML field.

Page 91 of 149

The Webhook module parses the received webhook and emits data

fields in a manner that can be directly consumed by the Trigger

module. The Trigger module's unique row identifier field should be

left empty for all webhooks.

API-Registered Webhooks

Some API's provide endpoints for the registration and management of

webhooks. API-Registered webhooks follow this basic pattern:

● When the webhook assembly is run in either the assembly or

automation editor, the Generate Trigger Webhook URL or

Generate Service Webhook URL subassemblies are used to

create the webhook URL that will be fed into the Webhook

module.

● When the webhook assembly is run in either the assembly or

automation editor, the API endpoint to register the webhook URL

with the app will be called.

● If the registered webhook is dangling because it was generated

in the Assembly Editor or an automation was deleted or not

completely built, the app's Delete Webhook assembly will be

invoked by the system to unregister the webhook from the app.

The first step for registering a webhook URL via an API is to generate

the webhook URL. This can only be done by either using the

Generate Trigger Webhook URL or Generate Service Webhook

URL subassemblies:

Both subassemblies accept a data parameter that can be supplied to

facilitate the needs of the Delete Webhook assembly, to be discussed

in the Dangling Webhooks section further below.

Page 92 of 149

The next step is to conditionally register the webhook URL via the API:

The API endpoint to register the webhook URL should only be invoked

when the assembly is being executed in the assembly or automation

editor. The Utility – When In module and Conditional module

above are used to determine when to invoke the subassembly to

register the webhook URL.

Finally, the generated webhook URL is wired into the Webhook

module's field:

Page 93 of 149

The Configuration Instructions are blank because the webhook is

registered automatically via the API and the end user doesn't need to

perform any configuration.

Dangling Webhooks

Webhooks that are registered via API have the risk of being left

dangling. A dangling webhook is one that is still registered with an

app, but no automation is available to receive and process the

webhook. So the app keeps sending the webhook needlessly.

Dangling webhooks can result from the following:

● Test webhook URLs are generated for use in the Assembly Editor

to facilitate building and testing of the webhook trigger assembly

● An end user starts to build an automation with the webhook

trigger but never saves the automation

● The automation is deleted

Developers of API-registered webhook triggers must build a Delete

Webhook assembly that will unregister dangling webhooks via the

app's API. The assembly must be named exactly “Delete webhook”.

It is a type of action assembly. It should be made private, because it

is not an action to be used in the automation editor. It is an action

just so it appears in the Assembly Editor's catalog underneath the app.

Page 94 of 149

Because it is an action, it must have an Action module which is

unused. The assembly can receive two query parameters named

“webhook_url” and “data”, both of which can be received via the

Query Parameter module.

The value of “webhook_url” will be the webhook URL that was

registered with the API. The value of “data” will be whatever data was

supplied to either the Generate Trigger Webhook URL or Generate

Service Webhook URL subassemblies:

The “data” value can be anything needed to facilitate deletion of the

webhook.

The system will periodically scan the database for dangling webhooks,

ones that are not associated with any automations. The system

invokes the Delete Webhook assembly for any dangling webhooks it

finds.

Page 95 of 149

Note: Don't forget to save your delete webhook

assemblies as PRIVATE.

Webhooks with one event type

Most apps send one event type per webhook URL. For example, a “new

contact” event would be sent to webhook URL #1 and an “updated

contact” event would be sent to a different webhook URL #2.

In this case, each event type maps to a separate webhook trigger

assembly.

The Generate Trigger Webhook URL subassembly must be used

when working with an app that sends one event type per webhook

URL, for the case where they provide an API for registering webhooks.

The generated webhook URL will be of the form

{SERVER_URL}/webhook/automation_uuid, which is to say that

each event type is processed by a single automation.

Webhooks with multiple event types per account

Some apps send multiple event types to a single webhook URL for a

given customer account. For example, both “new contact” and

“updated contact” and other events would all be delivered to a single

webhook URL. This type of webhook is called a Service Webhook.

In this case, the webhook URL maps to all the automations for the

user that contain any webhook trigger. The webhook triggers have to

inspect the webhook payload and only emit data if the payload

contains data for the given trigger. For example, a “new contact”

trigger would inspect the payload and only emit data if the received

event was a new contact.

The Generate Service Webhook URL subassembly must be used

when working with an app that sends multiple event types to a single

webhook URL.

The generated webhook URL will be of the form

{SERVER_URL}/webhook/app_assembly_uuid-person_uuid,
which is to say that the webhook is associated to the app and to the

end user. When the webhook is received the URL is parsed to

determine the app and user account. Then all active automation for

the user with triggers for the app are executed.

Page 96 of 149

Tip: The best way to understand how to go about

integrating webhooks is to view existing examples

already in the system. Find the Webhook module, the

Generate Trigger Webhook URL subassembly, and the

Generate Service Webhook URL subassembly in the

catalog, right-click on them, and find assemblies where

they are used to examine existing implementations.

Webhooks with multiple events and multiple accounts

Some apps may use a single webhook for sending all activity in their

entire system, for all customer accounts. MINDBODY and Clover

Network are two apps that do this.

Use a Unary Protocol Thread to build this type of webhook integration.

See the next section.

Page 97 of 149

Protocol Thread Triggers

Another form of Instant Triggers are Protocol Threads. A Protocol

Thread trigger maintains an always-running thread on the server that

will typically use an SDK that maintains a socket connection. Protocol

Thread triggers come in two variations:

● Unary Protocol Threads, where a given app will have a single

thread that handles all inbound and outbound data for all

automations. It is also possible for Unary Protocol Threads to

respond to payloads delivered to a single webhook URL.

● Per-Trigger Protocol Threads, where each trigger will have its

own thread. If 5 active automations use the trigger, 5 threads

will be running on the server.

Unary Protocol Threads

Two types of Unary Protocol Threads can be built: freeform threads

that send/receive data in any manner possible, and webhook listeners

that receive payloads delivered to a single URL.

Freeform Protocol Threads

Jabber is an example of a freeform Unary Protocol Thread, where a

SDK that wraps the XMPP protocol is used to send/receive messages

to/from the server’s bot account.

Page 98 of 149

Search for “Jabber” in the Assembly Editor catalog and load its

Protocol Thread assembly:

Account information for the Jabber bot is stored in the keyvault. The

Utility - Keyvault Value modules load the needed credentials from

the keyvault and supply the value to the Java JSP code within the

Unary Protocol Thread module.

Page 99 of 149

The bottom section of Java JSP code within the Unary Protocol

Thread module validates that the required server address and account

are not empty in the keyvault.

If the supplied server address and username/password are not empty

then the protocol thread is started in lines 187-192 above.

The protocol thread implementation starts at the top of the code:

Page 100 of 149

Note that this code imports the Smack Java library which handles

XMPP communication for Jabber. Java libraries needed by protocol

threads must be installed on the server in order to be used.

The protocol thread’s run() method should have an outer infinite loop

with an inner try block:

Here the code is signing into the Jabber server and setting the bot’s

presence to “available”.

Page 101 of 149

The thread’s run() method is the listening for inbound messages. This

section of code implements the callback receiver of messages:

After receiving the message,

appRPC.handleReceivedUnaryProtocolPayload() is invoked which

is the heart of any Unary Protocol Thread. This method is what routes

data to active automations.

The mechanism by which the system knows which automations to

invoke is the 3rd and 4th parameters. In this case, “jabber_account”

is used to identify connected accounts in the system.

Page 102 of 149

Open the “Jabber” app assembly and find this at the bottom:

So when a user connects a Jabber account their Jabber account id (for

Jabber it is like an email address) is saved in the system’s database

with the name “jabber_account”. When the user builds automations

having a Jabber trigger the account they selected will be associated

with the automation. This is how

appRPC.handleReceivedUnaryProtocolPayload() knows which

automations to invoke and deliver the payload.

The last parameter to

appRPC.handleReceivedUnaryProtocolPayload() must be an XML

string value consisting of the payload to send. In the case of the

Jabber implementation, lines 68 and 70 above create a simple XML

document to use as the payload. The Jabber triggers will receive this

XML payload from the protocol thread.

Page 103 of 149

Search for the Jabber “new chat by you (instant)” trigger in the

Assembly Editor’s catalog and open it.

The Receive Unary Protocol Thread Payload module receives the

XML payload and extracts data fields from it.

To initially build the trigger, the “dynamic trigger fields XML” value

at the bottom of the Receive Unary Protocol Thread Payload

module will be empty. Run the assembly in the Assembly Editor and

this message appears:

The Receive Unary Protocol Thread Payload module is waiting to

receive a payload. You would send your bot a Jabber message. The

waiting message will disappear when the payload has been received ok

Page 104 of 149

and the Receive Unary Protocol Thread Payload module will emit

the parsed data fields. That XML is then pasted into the “dynamic

trigger fields XML” field at the bottom of the module to use as the

default payload when the trigger is configured in the automation

editor.

Note: Your protocol thread must be running in order

for it to receive data and send a payload to the waiting

module. Protocol threads are started from the Admin

Console, which is described in the next section.

If your protocol thread emits payloads of varying schema, then you

would leave the “dynamic trigger fields XML” field empty, check the

“requires test transaction in automation editor” checkbox and

provide instructions on how to send a payload when configuring the

trigger.

Back to the end of the run() method in the Java JSP code:

The try block should break the outer while(true) infinite loop when an

InterruptedException is received, meaning the system is asking the

thread to be terminated.

All other exceptions are being logged via System.out.println().

Finally the Jabber connection is being disconnected when the thread

terminates.

Tip: To troubleshoot your code, use

System.out.println(). It gets written to your developer

trace log, accessible via your Developer menu at the

top right of the Assembly Editor.

Page 105 of 149

To send data, protocol threads must implement the

sendUnaryProtocolPayload() method:

The method receives a single argument which is an XML payload. That

payload comes from an action.

Page 106 of 149

Search for the Jabber “send a chat” action in the Assembly Editor’s

catalog and open it.

See that an XML document is constructed with the input values. This

is the XML payload that is being sent to the protocol thread via the

Send Unary Protocol Thread Payload module.

Back to the above code, observe that this XML payload is parsed and

the Smack library is used to send the message via Jabber XMPP. Any

errors that occur must be returned as a string error message from the

sendUnaryProtocolPayload() method. The error message gets

Page 107 of 149

logged into the automation’s logs and may also emailed to the

automation’s owner and system admin, depending on settings.

Webhook Listener Threads

Some apps such as MINDBODY and Clover Network use a single

webhook to send all data for all customers. This type of webhook can

be supported with a Unary Protocol Thread.

Search for “Clover Network” in the Assembly Editor catalog and open

the “Protocol Thread” assembly:

The URL for Unary Protocol Thread webhooks has the following

structure:

https://domain/webhook/protocol-tenant_uuid-app_assembly_uuid

Where “tenant_uuid” is the uuid of the tenant system. The tenant

uuid is empty for the master system.

And where “app_assembly_uuid” is the uuid of the app assembly.

Page 108 of 149

For Clover Network on APIANT’s development server, the webhook

URL is:

https://apiant.com/webhook/protocol--b7c90cd25da9480d89c05ce2aa6836f4

The bottom section of Java JSP code within the Unary Protocol

Thread module just starts the protocol thread. Webhook protocol

threads generally don’t need any other data.

Page 109 of 149

The thread’s run() method needs to just keep the thread running:

When the system receives payloads to the webhook URL, the system

invokes the handleReceivedWebhook() method:

The received payload depends on the sending system and may be

JSON, XML, or some other format. In this case for Clover Network,

JSON is received and the appRPC.json_to_xml() method is used to

convert it to XML.

Page 110 of 149

As with a non-webhook Unary Protocol Thread, the

appRPC.handleReceivedUnaryProtocolPayload() method is used

to send an XML payload to all active automations:

It is imperative that the webhook payload contain a piece of data that

uniquely identifies the connected account. For Clover Network, their

webhook payload contains a merchant ID. The Clover Network app

assembly obtains the merchant ID value during the OAuth workflow

and checks to make sure the value exists when validating the

connected account:

Webhook trigger assemblies are built in the same manner as described

for freeform Unary Protocol Thread triggers, using the Receive Unary

Protocol Thread Payload module. Usually the triggers will have to

Page 111 of 149

do filtering so that the triggers only process payloads of a specific

type.

See the previous section on how to use the Receive Unary Protocol

Thread Payload module to build webhook trigger assemblies.

Starting/Stopping Unary Protocol Threads

When you run a Unary Protocol Thread assembly in the Assembly

Editor, it doesn’t keep the thread running. It just runs for a second

and then terminates, just as a way for the thread developer to perform

a compilation check of the Java JSP code.

Unary Protocol Threads are started/stopped from the Admin Console’s

Protocol Threads screen:

Page 112 of 149

Select an inactive Unary Protocol Thread from the list at the bottom

and click the Activate button to start a thread. Once activated,

threads will be automatically restarted whenever the system boots.

You can view a protocol thread’s log by selecting it and clicking the

View Log button. The Java JSP code can write to the log with

System.out.println().

Stop an active thread by selecting it and clicking the Deactivate

button. Once deactivated, the thread will not be restarted whenever

the system boots.

Per-Trigger Protocol Threads

Per-trigger Protocol Threads are suitable when individual automations

need to keep a connection to a source of data. An example is a

message queue. They are built using the Trigger - Protocol Thread

module in a trigger assembly:

Page 113 of 149

This module can be thought of as a combination of the Webhook

module and the Unary Protocol Thread module. For each active

automation, the system will execute the Java JSP thread on the

server. So if 5 automations are active using protocol thread triggers,

5 threads will be running.

The Java JSP code implementation is essentially the same as a Unary

Protocol Thread. See the previous section on Unary Protocol Thread

development for information on developing the Java JSP code.

Page 114 of 149

Polling Triggers

Polling triggers periodically check an API for new or updated data, for

example every 15 minutes. The polling schedule and frequency is

configurable by end users in the Automation Editor's dashboard.

Polling triggers should only be used when equivalent webhooks are not

made available by the API provider. Polling triggers are less efficient,

consume more system resources (as well as for the API itself), and can

potentially miss new/updated data when many data rows are

added/updated in the API.

Polling triggers begin by fetching a list of data from the API:

The example above is a polling trigger for new forms. Polling triggers

that monitor for new data must receive the data sorted by newest

items first. Polling triggers that monitor for updated data must receive

the data sorted by most recently updated first.

Warning! Polling triggers will not operate correctly if

the data is not sorted appropriately from the API.

Most API's return a fixed amount of data rows. Polling trigger

developers need to be aware that if more items are added/update in

the app than are retrieved from the API, those items will be missed

and never processed by the automation. For example, if a polling

trigger fetches 100 data rows from the API and the automation runs

every 15 minutes, then if the end user adds or updates 150 items in

the app within 15 minutes 50 items will not be processed.

Page 115 of 149

Running the automation at a faster polling speed can be one way to

reduce the possibility of missed items. Retrieving more data rows can

be another.

If an API supports fetching new or update items that have been added

or updated since a given timestamp, it is usually best to take

advantage of that as a way to avoid possibly missed data rows:

In this example the API has a minDate parameter that is being

configured to fetch canceled appointments. The Utility – When In

modules are being used to configure different values depending on

whether the assembly is being run in automation rather than in the

assembly or automation editors.

When running in an automation it is desirable to fetch a manageable

amount of data rows such that the automation won't hit its timeout

limits. In the above example up to 250 items are fetched for the

previous 24 hours.

When running in the automation editor and assembly editor, just a

single data row is needed. If the Trigger module is configured to emit

dynamic data fields like is done for the above example, then the

trigger must try to fetch at least one data row so its data fields can be

parsed and emitted by the Trigger module to facilitate data field

mapping in the automation editor. So the example above searches for

one data row up to 999 days old, just to make an attempt to find at

least one data row to facilitate the parsing of dynamic data fields.

Page 116 of 149

After fetching data, polling triggers should then use the Trigger –

Emit New Items module to determine which data rows are new or

updated:

The example above is for a new form trigger. The Trigger – Emit New

Items module is configured to examine all form ids. The module

stores the form ids in the database. Each time the trigger is executed

the ids stored in the database are compared against the form ids

received from the API. Only data rows with form ids not currently in

the database are emitted, representing new forms.

Note: Note that the selected unique row identifier

must be the same in the Trigger – Emit New Items

module and the Trigger module. If they aren't the

same the Assembly Editor will display a warning when

the assembly is saved.

Page 117 of 149

Triggers for updated data need logic to create a unique identifier that

is a combination of the item id plus its last updated timestamp for use

with the Trigger – Emit New Items module. In this manner, the

Trigger – Emit New Items module will know when an item has been

updated when its last updated timestamp changes:

The above example is the general pattern to use to build unique

identifiers for updated data items. Use a Loop module with a nested

Text Builder to concatenate the item ids with the last updated

timestamp, then configure the Trigger – Emit New Items module to

use the generated update identifier.

Don't forget that the Trigger module also needs to use the generated

update identifier, too.

Page 118 of 149

Tip: Any processing that a polling trigger needs to

perform on data rows, like transforming data or

making additional API calls to fetch additional details

for each data row, should be performed AFTER the

Trigger – Emit New Items module, since it emits only

the data rows being emitted by the trigger. It would

be wasteful processing to perform functionality on data

rows that later get discarded and not emitted by the

trigger.

All polling trigger assemblies must have a Trigger module at the end:

The Trigger module emits data fields for each data row that can be

mapped to actions in automations. The example above shows static

data fields being keyed in manually.

Page 119 of 149

Data fields can also be parsed and extracted dynamically from the

data:

The Trigger - Extract Data Fields module is able to parse out all

data fields from most API's. Its output data stream can then be

selected in the Trigger module for emitting the dynamically parsed

data fields.

When a trigger emitting dynamic data fields is configured in the

Automation Editor, the trigger is executed in order to fetch a record

and parse its fields. The trigger's API call should use the Utility –

When In module to configure the API parameters to try to fetch a

single record, so end users don't have to wait any longer than needed

when configuring the automation. The Trigger module can be

configured with default data fields if no item can be fetched from the

API when configuring the trigger in the automation editor.

To configure default data fields, run the trigger in the Assembly Editor

so that at least one trigger record is emitted. Open the Stream

Inspector for the Trigger module, copy its output, and paste it into the

bottom of the Trigger module.

Note: Default output fields should only be defined for

triggers that always emit the same fields, e.g. not for

triggers that emit custom fields.

Page 120 of 149

Data Row Identifier Storage

Polling triggers store data row identifiers in the database in order to

avoid reprocessing records that have already been processed.

The Trigger - Emit New Items module reads row ids from the

database. Each data row having an id already in the database is

filtered from its input data stream. Only data rows with ids not in the

database are emitted:

Data row ids are stored in the database by the automation execution

engine when the first action completes its execution, regardless if the

action succeeded or failed.

Consider if the trigger emits 5 data rows to be processed. The

automation execution engine processes each data row serially, one

after another. As the first data row begins to process, after the first

action completes the data row’s id is stored in the database. As each

action completes its execution the state of the engine is updated in the

database so that if a failure occurs a retry can be performed from the

point of failure.

Now consider if something interrupts the system while the second data

row’s actions are being processed. The data row ids for the remaining

third, fourth, and fifth data rows are not yet stored in the database.

So the next time the polling trigger is executed, they can be emitted

by the Trigger - Emit New Items module, assuming they are present in

the API’s response of fetched data.

Page 121 of 149

Date/Time Triggers

Date/Time triggers fire at a certain date and time, or on a periodic

time schedule like once an hour. The Trigger on Date Time module

is used to define the schedule:

Typically Parameter modules are used to allow the end user to

configure the schedule, as shown.

Page 122 of 149

Gated Triggers

Gated triggers fire only once each time a threshold criteria is met. An

example is a weather trigger that fires when a temperature goes below

a certain value. The trigger fires once when the temperature falls

below the threshold, but doesn't fire again until the temperature rises

above the threshold and then falls below the threshold again.

Gated triggers simple need to make an API call to fetch the data, then

configure the threshold criteria and the event using the Trigger

(Gated) module:

Typically a Parameter module is used to allow the end user to

configure the threshold value, as shown.

Page 123 of 149

Export Triggers

An export trigger is one that can be used for one-time bulk exports of

data from one system, typically so it can be loaded into another

system.

Export triggers are denoted by using “Export” as the first word in the

trigger's name.

Export triggers are constructed in a manner where all API data is

fetched, typically via pagination. Export triggers do not use the

Trigger – Emit New Items module.

Page 124 of 149

Export automations that have an export trigger appear differently in

the automation editor's dashboard. They are never in an active state

and can only be executed manually:

They can only be executed in export mode:

Executing the automation in export mode results in any timeout

settings to be ignored. The automation will run until it processes all

data, or until manually halted.

Warning! Automations process all data in-memory. It

is possible for an export automation to be halted by the

system if it consumes too much memory, depending

upon how much data is processed and the system's

available memory.

Page 125 of 149

Action Assemblies

All Action assemblies begin with an Action module that defines input

data fields for the action to process:

Static input data fields can be typed into the module and configured

manually. Dynamic data fields can be loaded from a nested

subassembly. As an example of when dynamic fields must be loaded,

consider a spreadsheet action to write a new row. The action doesn't

know which columns are available until the sheet is inspected via the

API and its columns are determined.

Tip: Rather than keying in and configuring a lot of

static data fields by hand, you can create a

subassembly and use the Data Streams – Create

From Text module to configure the fields from static

XML data, which can be easier to create.

The outputs from the Action module are then typically formatted for

sending to the API. The URL Builder, Text Builder, JSON Builder

and XML Builder modules can be helpful for formatting data.

Complicated data formatting usually requires custom coding via the

Extension – Server-Side Script module.

Once data is formatted, the API is invoked via the HTTP or OAuth

Transaction modules, or one of their variants.

Page 126 of 149

After invoking an API call, the action should check for any error

conditions and return an error if the API call was unsuccessful:

Warning! Actions must catch and throw all error

conditions in order for the transaction to be flagged as

an error in the automation’s history and for alert

processing to be performed.

The proper way to do error checking in an Action is to

test for the absence of a successful result from an API

call. For example, if you are adding a new contact to a

CRM then check the API’s response to ensure that the

new contact ID is returned.

Some actions need to indicate to the system that the trigger data row

should be skipped rather than retried. For example, an action that

checks for existing duplicate data needs to skip the trigger data row if

a duplicate exists. The Action - Skip Data Row module can be used

within a Conditional module for this.

Page 127 of 149

Finally, actions can emit output data fields via the Action Output

module.

The output data fields can be used as inputs to subsequent actions in

multi-action automations.

Find Actions

A Find Action is one that finds a single item and returns its information

using the Action Output module. An example is a CRM “find contact”

action that looks up a contact by email address.

The best example of a general-purpose find action is the Salesforce

“find object record” action. When configuring the action in the

automation editor this action emits all available output fields without

performing a search, by fetching the object’s schema of available

fields.

Warning! If an Action Output module emits dynamic

fields, the action assembly is executed in the

Automation Editor when configuring the automation in

order to determine the mappable fields. The action

must not perform any API call that creates data!

Use the Utility - When In module and Conditional

modules to control processing done when configuring

the action in the automation editor vs. its behavior

when running in an automation.

Page 128 of 149

Two-Way Sync

Two-way sync (or bidirectional sync) is when changes are mirrored

between two systems. Traditional triggers and actions cannot

accomplish two-way sync because they would result in an infinite loop.

For example, when a new item is added in System A, automation #1

would then add the item in System B. But then an automation #2 that

monitors System B for new items would be triggered and the same

item would be added to System A, which again triggers automation #1

watching System A for new items.

The system makes it possible to build two-way sync automations that

avoid infinite loops:

Each action maps data fields from the other app's trigger. When

needed, the Transform Text app's Lookup value in key-value table

action can be used to map values from app to app.

Page 129 of 149

The system's two-way sync implementation currently has these

limitations:

● Only "flat" records can be synced currently. Arrays of data

associated with the main records won't be synced. So in the

case of billing orders, line item changes won't be synced. It is

possible to initially create the order line items in the other

system. It's just that any subsequent changes to the line items

can't be mirrored.

● Only items added to either system after the automation is built

will be synced.

● If a synced record in both systems is updated at the same time

when the automation runs, only one change is made. There is

no merging of conflicts when a synced record is modified in both

systems before the automation runs.

Two-Way Sync Triggers

Two-way sync triggers must use the Trigger Two-Way Sync module

instead of the Trigger – Emit New Items module:

Page 130 of 149

This module can be used in both polling triggers and in webhook

triggers. Be sure to set the Trigger Type at the top of the module

appropriately.

The Trigger Two-Way Sync module adds a node to each emitted data

time named two_way_sync_trigger_unique_row_id. This data

node must be selected as the unique row identifier in the Trigger

module:

The Trigger module will emit a field named

two_way_sync_identifier that must be mapped in the automation

editor to the field of the same name in the action's field mappings.

Note: Two-way sync triggers must have a name

starting with “Two-way sync”. The system currently

uses the trigger name to determine which triggers are

two-way sync.

Two-Way Sync Actions

Two-way sync actions must define a field named Two way sync

identifier as their first static data field. The field must be required.
It is best to copy its help text from another two-way sync action

assembly in the system.

Page 131 of 149

Two-way sync actions must use the Action Two-Way Sync module

with nested subassemblies to perform the configured actions:

The Action type selection determines what action the subassembly

should perform. The Action Two-Way Sync modules must be chained

together in the order of Create => Update => Delete.

The Trigger Two-Way Sync and Action Two-Way Sync modules both

store item identifiers and timestamps in the system's database that

are used to determine which action type needs to be performed.

Note: Two-way sync actions must have a name

starting with “Two-way sync”. The system currently

uses the action name to determine which actions are

two-way sync.

Page 132 of 149

Chapter 6: Other

Assembly Types

Page 133 of 149

Web Services

Web Services are assemblies that can be invoked via a URL. Web

services make it possible to build API endpoints in the form of

assembly diagrams that can be invoked and return data to other

systems and programming tools.

All web service assemblies must have a Web Service Output module

that emits data:

Three versions of the Web Service Output module are currently

available: XML, JSON, and CSV.

Input into web services can be received as either one or more query

parameters on the URL that are received by Query Parameter

modules, and/or as a POST payload received with the Post Body

module.

When the Execute Assembly link at the top right of the editor is

clicked for web services, an option will appear to run the web service

in a new browser tab. This can be used to obtain the URL for invoking

the web service.

Page 134 of 149

When an assembly containing the Web Service Output module is

saved, a system-wide unique web service name must be entered. This

unique name can also be used to invoke the web service:

In the example above, the flickrRecentPhotos web service is invoked

by name with a URL, by passing a name parameter.

Page 135 of 149

Web services are easily consumed within other assemblies in APIANT

by dragging web services out of the catalog:

The example above shows the flickrRecentPhotos web service as it

appears when placed within an assembly.

Notice that the flickrRecentPhotos web service has a query

parameter, “tags”. This comes from a top-level Query Parameter

module embedded within the web service assembly.

Page 136 of 149

Query parameters are passed on the URL to the web service. The

following shows how that is done:

All top-level Query Parameter modules within the web service

assembly can be specified in this manner on the URL used to invoke

the web service.

Page 137 of 149

Managing Web Services

Web services can be managed via the More => Manage Web Services

menu:

A dialog will open showing all your web services:

User accounts having a subscription plan will be able to see how many

times their web services have been invoked for the current billing

period.

Page 138 of 149

RSS Feeds

An RSS feed is an XML file with a standardized structure, typically used

for blog or news articles. Assemblies can be built that generate RSS

feed files:

In this example, the Emit RSS Feed module is used to format the

feed output. The Text from XML Nodes module then extracts the

RSS feed contents as a string and saves it to a file on the server using

the Write to server file module.

Tip: You typically want the RSS feed to be refreshed

periodically. That can be done by making the RSS feed

assembly a Batch Job. See the next section.

Page 139 of 149

Batch Jobs

Batch Jobs can be created to execute assemblies at a scheduled

interval. They can be useful for background tasks that need to occur

at a regular interval, like refreshing RSS feeds.

Batch Job modules define a batch job:

Three variations of Batch Job modules are currently available. The

Cron version lets a raw cron schedule string be configured. The Daily

and Hourly versions are simpler, where the system will randomly

choose a schedule that runs at a daily or hourly rate.

Batch Jobs are not executed until they are activated. See the next

section Managing Batch Jobs.

Page 140 of 149

Managing Batch Jobs

Batch jobs can be managed via the More => Manage Batch Jobs

menu:

A dialog will open showing all your batch jobs:

User accounts having a subscription plan will be able to see how many

times their batch jobs have been invoked for the current billing period.

Note: Batch jobs only execute if the Is Active

checkbox is checked.

Page 141 of 149

Chapter 7: Other

Functionality

Page 142 of 149

Simple DB

The system provides a generic database storage mechanism called the

Simple DB. The Simple DB consists of a database table and modules

for inserting, retrieving, and deleting data from the table.

The Simple DB database table has the following schema:

These modules are used in assemblies to interact with the Simple DB

storage:

Page 143 of 149

Data is organized into a 5-level hierarchy:

Scope => Key Group => Key => Value name => Value

All Simple DB modules work with data in a defined scope. The scope

determines the visibility of the data across different system entities.

Data stored in the "person" scope is global across all assemblies for

the user's account. The Scope UUID field can be set to a person

account UUID retrieved from the Get Account Info module. If the

Scope UUID field is empty, the currently signed-in user account is

used instead.

Data stored in the "developer" scope is global across all assemblies

owned by the developer. The Scope UUID field must be set to the

developer's UUID, obtained by right-clicking on the Assembly Editor

grid background and selecting the Get Developer UUID context menu

option.

Data stored in the "automation" scope is accessible across all trigger

and action assemblies within an automation. The Scope UUID field is

unused.

Data stored in the "assembly" scope is accessible across all created

instances of the assembly. The Scope UUID field is unused.

Data stored in the "assembly instance" scope is accessible across all

modules in a single instance of the assembly. The Scope UUID field is

unused.

The mashup and mashup instance scopes should not be used, they are

only for visual widgets built in the system.

Page 144 of 149

Importing and Exporting

Assemblies and modules can be transferred between APIANT systems

via import/export.

When an item is exported, all deterministic references it has to other

content also gets exported.

Exporting

To export an item, right-click on it in the catalog to open the context

menu and choose the Export menu item:

Or right-click on the background of an open assembly diagram to

export that assembly:

Page 145 of 149

The item will then be exported into a single file that will be saved to

your local machine.

Note: The export menu option will only appear for

items you own or those that have been shared with

you.

Warning! Do not alter the file name of the exported

item.

Page 146 of 149

Importing

Items can be imported in two ways. The first is to right-click on the

module catalog’s white background area to open the context menu and

choose an Import menu item:

Page 147 of 149

A second way to import is to right click on the editor’s canvas to open

its context menu and choose an Import menu item:

A browser dialog will appear for selecting the exported file from your

local system. After a file is selected, it will be uploaded to the server

and processed.

Page 148 of 149

Publishing

APIANT can be configured with one or more Development Servers used

to develop and test modules and assemblies. After content has been

developed and tested, it can be published to one or more Production

Servers.

From the catalog in a Development system, right click on an item that

you own to access the publish option:

Click the Publish to production server(s) menu item to publish the

item to all Production Servers associated with the Development

Server.

Page 149 of 149

